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I N  I N H O M O G E N E O U S  

We cons ider  a p a r t i c u l a r  model of magnetohydrodynamic  turbulents .  The mos t  fundament-  
al assumpt ion  we make is  that the veloci ty  cor re la t ion  t ime  is negligible.  By using a s e l ec -  
t ive summat ion  of the per tu rba t ion  theory  s e r i e s  an exact  equation for  the magnet ic  f ield is  
obtained when the mean  square  value of the ve loc i ty  depends on coordina tes ,  i .e . ,  when the 
turbulence is inhomogeneous.  The re su l t  makes  it poss ib le  to obtain the " m a c r o s c o p i c "  
Maxwel l ' s  equations,  i .e . ,  the equations for  the l a r g e - s c a l e  components  of the e l e c t r o m a g -  
netic field. 

In p r o b l e m s  of magnetohydrodynamie  turbulence the turbulence is  usual ly  cons idered  homogeneous .  
The r e su l t s  of such cons idera t ions  reduce  bas i ca l ly  to the following. I f  a weak l a r g e - s c a l e  magnet ic  field 
is  i m p r e s s e d  on a high-conduct ivi ty  turbulent  fluid (the scale  of the field being much l a r g e r  than the scale  
of the pulsations) in the absence  of gy ro t ropy  there  is  an anomalous  diffusion of the field [1]. 

Actual turbulence is a lways inhomogeneous.  Fo r  example ,  there  is a lways a boundary of the turbu-  
lence.  It would s e e m  that an inhomogeneity in the in tensi ty  of the pulsat ions  would lead s imply  to anomal -  
ous diffusion with a diffusion coefficient  depending on coordina tes .  In this case  m a c r o s c o p i c  e l ec t rodynam-  
ics ,  i .e . ,  the equations for  the l a r g e - s c a l e  f ie lds ,  would not d i f fer  f r o m  the "mic ro scop i c "  or  o rd ina ry  
Maxwel l ' s  equations,  but in O h m ' s  law the o rd ina ry  e lec t r i ca l  conductivity would be rep laced  by an anom-  
alous conductivity depending on coordinates .  The fact  is that the inhomogenei ty gives  r i s e  to a new effect  
analogous to d iamagne t i sm.  This  was f i r s t  noted by Ya. B. Zel 'dovich [2] for  the ideal ized two-d imens ion-  
al case  and by Radle r  [3] for  a weakly conducting fluid. 

We cons ider  a high-conduct ivi ty  fluid. Since pulsat ions  of the magnet ic  field in this  case  a re  not 
smal l  in compar i son  with the l a r g e - s c a l e  field, the ve loc i ty  pe r tu rba t ion  theory  s e r i e s  cannot be broken  
off as  is done in [3]. In using se lec t ive  summat ion  of the s e r i e s  we neglect  the co r r e l a t i on  t ime of the 
pulsa t ions .  This  is  justif ied since it will be shown below that the cha r ac t e r i s t i c  t ime of var ia t ion  of the 
magnet ic  field is  apprec iab ly  longer  than the cor re la t ion  t ime.  

We have the f ami l i a r  equation for  the magnet ic  field H 

0~_H = rot Iv, HI + v,~Al~l 
ot 

where v is  the ve loc i ty  and v m is the magnet ic  v i scos i ty .  We a s sume  that the ve loc i ty  field is  given so 
that the p rob l e m  is  pure ly  k inemat ica l .  The equation of motion is  not requi red .  This  p rocedure  is pos -  
sible if  the ene rgy  of the l a r g e - s c a l e  magnet ic  field is  l e s s  than the energy  of the pulsa t ions .  We proceed  
to the specif icat ion of the ve loc i ty  field. 

1. Derivat ion of the Veloci ty Spectrum Tenso r .  We wri te  v (x,  t) in the f o r m  

v ( x , t ) = / ( x ) u ( x ,  O, (u ~ ) = 1  (1,1) 

The symbol  < > denotes  averaging  over  the pulsat ions .  This  is  poss ib le  if  <v2> does not depend on 
t ime,  which we a s sume  is the case .  We also a s sume  that the inhomogenei ty is  weak,  i .e . ,  that f (x)  v a r i e s  
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s lowly  with  the  c o r r e l a t i o n  length,  Then one cannot  expec t  that  the v e l o c i t y  f ie ld  wil l  be i s o t r o p i c  s ince  
V f  d e t e r m i n e s  a p r e f e r r e d  d i r ec t ion .  S t r i c t ly  speak ing ,  the d i r ec t i on  of the l a r g e - s c a l e  f ie ld  can a l so  be 
s ingled  out,  but s ince  the e n e r g y  of th is  f ie ld  is  s m a l l ,  we  neg lec t  i t s  e f fec t  on the mot ion .  Then  the c o r -  
r e l a t i o n  t e n s o r  h a s  the f o r m  [4] 

, 1  

(r = x~ -- xl, r (x) = p (x)) (1.2) 

H e r e  A,  B,  C1, and C2 a r e  func t ions  of r and (rVcp). Since the i nhomogene i t y  i s  weak ,  we se t  

I (xl) I (x~) = ~ (x:) + :/~ (rYe) 

A ~ A 1 ( r ) +  (rVT) Ao (r), C 1 = C8 (r) %- (rVq~) Ca (r) 

B == B 1 (r) + (rVq~) B, (r), C, = C~ (r) + (rVcfl) C6 (r) (1.3) 

We subs t i tu te  (1.3) into (1.2) and r e q u i r e  that  

<v~ (x~) vj (x~)> = <vj (x~) v, (x35 

r e t a in ing  f i r s t - o r d e r  t e r m s  in the s m a l l  quant i ty  r i0~o/~xj  in the t e n s o r .  Then  (1.2) t a k e s  the f o r m  

o9 
= + -~- (rVq~) [At6~j + Btrirj] (1.4) 

We go o v e r  to  the F o u r i e r  r e p r e s e n t a t i o n  of (1.4) 

v (x) = I u (k) exp i (kx) dk, ~ (r) == f ~ (k) exp i (kr) dk 

(vi (x~) vj (x~)) = I (u~ (k~) u I (k~)) exp i [(k~x~) + (k2x2)l dk~dk~ = f/~J (k~, k) exp i [(k~x~) + (kr)] dk~ dk 

%- (B (kk~) dB 
2k dk / 6i./j %- C (k) J q~(k l -  k3)q~ ( k 3 ) -  k,k3,]dk~ [/@~j 

Thi s  t e n s o r  i s  c o n s i d e r a b l y  s i m p l i f i e d  if  i t  i s  r e q u i r e d  to be so leno ida l  

k,j,,; (ki, k) ---- 0, (k~ -- k 0 / i ;  (kx, k) ----- 0 (1.5) 

The  f i r s t  of condi t ions  (1.5) r e d u c e s  f i j  to  

]~./= q~ (kx)[(A (k) (kkx). dA 2~ da / (k'61; -- k~kl) -- A (k) ((kxk) 6~ - -  k]~)]  (1.6) ) 

The second of  condi t ions  (1.5) does  not  add anyth ing  new; it l e ads  to 

(k,k) d A  (k~k)k i - -  k ~ k ~ )  = 0 r (kl) 2k d~, 

T h i s  equa t ion  i s  s a t i s f i e d  a u t o m a t i c a l l y ,  s ince  it  i s  a s s u m e d  tha t  q (r) v a r i e s  s lowly  and that  only  
f i r s t  d e r i v a t i v e s  a r e  t aken  into account ;  the l a s t  equat ion  i s  q u a d r a t i c  in k 1. We w r i t e  out the e x p r e s s i o n  
f o r  

+ dAdk~(k~) 2k~l (k2 ~ + (k~k~)) (k~k~i-- k:~6~)] (1.7) 

I f  the v e l o c i t y  f ie ld  i s  h o m o g e n e o u s  (1.7) g o e s  o v e r  into the we l l -known  s p e c t r a l  t e n s o r  

q~ (k 1 + k~) =, D6 (k~. -+- kz) 

1'~ (k~, k~) = D6 (k 1 + k~) A (k~) (k~6~ - -  ki~k~ ) 



2 .  

t ion t h e o r y  s e r i e s .  Le t  t t  (k, t) be  a F o u r i e r  componen t  of  the m a g n e t i c  f ie ld  
De r iva t i on  of  the Equat ion  fo r  the Magne t ic  F ie ld .  In the fol lowing we u s e  the v e l o c i t y  p e r t u r b a -  

H (k, t )=  ~. II(~), H(o) = II (k, 0) exp ( - -  "r 
~ 0  

t 

II(=+~) (k, t) ---= i I exp [k%'m (t~ - -  t)] dt I I[k [u ( k - -  k ' ,  tl) II  (n) (k', tl)]] dk '  
0 

A v e r a g i n g  o v e r  p u l s a t i o n s  we s e p a r a t e  out the l a r g e - s c a l e  componen t  

<H(n)> = B(~), <if> = B 

(2.1) 

We u s e  the fol lowing mode l  of  t u rbu l ence :  1) the v e l o c i t y  p r o b a b i l i t y  d i s t r i bu t ion  i s  G a u s s i a n ;  2) we 
neg lec t  the c o r r e l a t i o n  t i m e  

(ui (kl,lt) uj (k2, t') ) = rm3 (t - -  t') ]'~1 (kl, k2) 

Using th is  mode l  we  find that  the odd t e r m s  of the s e r i e s  v a n i s h  and the even  t e r m s  obey  the r e c u r -  
r e n c e  r e l a t i o n  

t 

B(~) = "~- I exp [~:m k~ (t, - -  t)] f dkl [k [(k -- kl) q9 (k -- kl) B(2~-2)(kl, t~)]]dt~ (2.2) 
0 

t 

+ P I exp [vm ks (tl -- t) l I dk~ [k [k- -  k~) q) (k~) B(~'~-~) (k -- kl, t,)]! dtt 
0 

p:31A(k)  dk 
I t  i s  e a s y  to show tha t  the equa t ion  f o r  which (2.2) is  the p e r t u r b a t i o n  t h e o r y  s e r i e s  h a s  the  f o r m  

o r  in r - s p a c e  

OB (r, t) 
Ot 

OBot(k, t) _+_ vmk~B (k, t) = + I dkl [k [(k -- kl) (P (k -- k~)B (kl, t) ll 

~- P l  dk~ [k [(k -- k~) r (kl) B (k--k~, t)l] (2.3) 

= vmAB - ~ -  rot [ Vq~, B] - p rot q~ rot B = -- rot vm (t + %)'/~ rot (t A- ~)v, B (Z -- PC/vm) (2.4) 

w h e r e  • i s  the magne t i c  Reyno lds  n u m b e r .  Equa t ion  (2.4) d e s c r i b e s  the d i f fus ion  of the l a r g e - s c a l e  f ie ld  
B in an i nhomogeneous  conduc to r  wi th  a v a r i a b l e  e l e c t r i c a l  conduc t iv i ty  

~e~t = vm (1 A- ~)'/2; Zert = z ( i  A- ~)-'/~ (2 .5)  

and a v a r i a b l e  magne t i c  p e r m e a b i l i t y  

t~ : (1 ~-X)-'/, (2.6) 

In  the m o s t  i n t e r e s t i n g  c a s e ,  X >> 1, Veff >> v m ,  a e f f  << or, and # << 1. Now we can  w r i t e  the m a c r o -  
scop ic  Maxwel l t s  equa t ions  

t 0B 
c 0t rot E, d ivE  = 4~tp, d ivB = 0 (2.7) 

4~ . 1 B r o t H = - z - j ,  E = < e > ,  I I =  

Here  e i s  the in t ens i ty  of  the e l e c t r i c  f ie ld.  

O h m ' s  law t akes  the f o r m  

Ez (2.S) J (i+~)1/, 
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We write the express ion for rot  B, i.e., for  the macroscopic  current  

rot B ---- 4n ~E i [VZ, B] 
c l +  x 2 i+X  (2.9) 

Equation (2.9) is identical with Rad le r ' s  equation [3] obtained for  small  pulsations of the magnetic 
field by calculating the quadratic effect. The pulsations will be small  if • << 1. 

3. Boundary Value Problem.  Suppose ~ is constant in a cer ta in  region and falls to zero  in the boun- 
dary  layer  of this region (turbulence in a bounded region). The boundary conditions for  the cur rent  can be 
obtained by integrating (2.4) over  the volume of the boundary layer ,  i .e. ,  in the usual way. A s  a resul t ,  we 
obtain 

(i + g) rott,B = rott,B (3.1) 

Here rot  tl and rot t2 denote the t r ansve r se  components of rot  B inside and outside the region,  r e spec -  

tively. Of course  (3.1) can be obtained f rom (2.9) also. We note that, as usual,  Et is continuous at the 
boundary. Naturally the normal  component of the current  also is continuous at the boundary. 

The boundary conditions for  B are  

Bn, = B~,  (t + %)%Bt, = Bh (3.2) 

The second condition of (3.2) follows f rom (2.6) and can be obtained by integrating (2.9) over  the vol -  
ume of the boundary layer .  The surface cur ren t s  are  given by the second t e rm on the r ight-hand side of 
(2.9). 

Because of the variat ion of the e lectr ical  conductivity space charges  are  produced,  or for  an infinite- 
ly thin boundary layer ,  surface charges .  

Taking the divergence of (2.9) and using (2.7) we obtain 

div E = 599 = c (vg rot B) 8~ (3.3) 

Using the equation of continuity and Ohm's  Iaw we find that the time for the charge in (3.3) to build 
up is (1 + • Thus the equations of quasis ta t ionary e lec t rodynamics  (2.7) will be justified, i .e. ,  the 
displacement cur ren t  can be neglected,  if 

t o ~  (f +x)v, 4~r~ (3.4) 

where t o is the charac te r i s t i c  time of the p rocess .  

We note that the analogy with diamagnet ism is not complete.  If the turbulent region is bounded by a 
vacuum, the following situation can ar i se :  (r dec reases  to zero in the boundary layer ,  but • is constant in 
this layer .  

Then, instead of (2.9) and (3.2), we have 

rot B = 4r~ ~E Bn~ ~- Bn .  Bt~ = Bt, c l + g  ' 

when the microscopic  magnetic  permeabi l i ty  is unity. 

4. The Two-Dimensional  Case. It is of in teres t  to consider  the idealized two-dimensional  case Vz = 
0, Bz = 0, 0 /0z  = 0, since it can be solved by an independent method [2]. Here the equation for  the vec tor  
potential is completely analogous to the famil iar  heat equation for  a fluid. This makes it possible to test 
the method descr ibed above. 

Instead of (2.2) we obtain, in this case ,  

t 

~(~)  -- ~ fexp  t~,,~k ~ (tl - 01 idkl  [k i(k --  kl) ~ (k--k1) B(~-~)(kl, tl)l! dt~ 
0 
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t 

+ P f exp [~m k~ (Q --  t)l I dkl [k[(k -- k 0 (p (kl) B (~n-~) (k -- kl, t011 dtx 
o 

k = {k~, k~,,O}, k 1 = {kl~, klu, 0}, U (t) = {B~(I), Bu(t) , O} 

B(k, t) sat isfies the equation 

The equation 

OB ot(k' t) _~_ ~mk9 B (k, t) ~- ~ I [k [kq) (k--- kx) B (kl, t)]l d kx 

an(r,t) _ _ r O t v m r O t ( l +  X l B  
2 ]  

descr ibes  the diffusion of the field when g = (1 + ~/2 • ) - 1  We write the equations 

(4.z) 

rot B 4~ Ez t [VZB] rot H =- ~ E  
c t+112 x 2 I+X/2 ' c 

Although we are  concerned here  with a uniform electr ical  conductivity, the boundary value problem 
in the two-dimensional case is s imi lar  to that in the three-dimensional  problem. B t and rot  t B are discon-  
tinuous at the boundary but the magnitude of the discontinuity is different. No space charge appears  in the 
two-dimensional problem since the condition 

divj = 0 ---g~z ]z--  0 

is satisfied automatically.  

5. Discussion of the Results .  At t ime t = 0 let a weak magnetic field be impressed  on a h igh-con-  
ductivity fluid. In addition suppose turbulence is induced in par t  of the fluid. Let v = 0 and B = B (r, 0) at 
t = 0. B is continuous and r o t n B  = 0 at the f luid-vacuum boundary. We do not interest  ourse lves  in the 
question of how and for how long the turbulence is induced. We assume that at t ime t 1 a s tat ionary state is 
reached,  i .e. ,  the stat ist ical  cha rac te r i s t i c s  of the velocity become independent of t ime. At this instant 
diamagnetic proper t ies  appear and the field begins to be expelled f rom the turbulent region. The cha rac -  
te r i s t ic  time of expulsion is 

L12 
t ~  vm(t+X) 

Here L 1 is a dimension of the turbulent region.  The problem of the damping of the total field is now 
reduced to the problem of finding the eigenfunctions and eigenvalues of (2.4) by substituting B = A(r) exp x 
(-Tt) [5]. To find the approximate value of the minimum ~, and thereby the charac te r i s t i c  damping t ime 
of the field, it is  sufficient to use for  E the equation obtained f rom (2.7). 

i aE -- rot (1 + X)'/, rot E (5.1) 
v m ( t + Z ) ~ / ~  Ot' = 

Equation (5.1) is true for  all space if it is assumed that cr goes to zero eontinuously at the fluid- 
vacuum boundary. We multiply (5.1) sea lar ly  by E and integrate over  all space, taking account of the faet 
that Et is continuous at the boundary of the turbulent region.  The boundary conditions for rott  E are  ob- 
tained f rom (3.2) 

, d I E~ 2 dt "m (i + Z),/~,dr ---- --  (1 + ~)'1~ (rot E) ~ dr (5.2) 

Using (5.2) and the boundary conditions it is easy to est imate the damping time of the field 

t3 = L~/V~ (5.3) 

We recal l  that (5.3) agrees  with the damping time of the field in a solid conductor where L is a di-  
mens ionof thewhole  fluid. It is obvious that (5.2) and (5.3) are valid if the dimensions of the nonturbulent 
part  of the fluid are  not too small  in comparison with L1, i .e. ,  ff I~ > L2(1 + • )- l ,  where L 2 is the smallest  
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d i ame te r  of the nonturbulent pa r t  of the fluid. Otherwise  the magnet ic  field is not comple te ly  expel led and 
the damping of the total field occu r s  for  a t ime t 2. 

It  is  e a sy  to see that t 3 >>t 2 >> l/v, where  l and v a re  r e spec t i ve ly  a r ep re sen ta t i ve  dimension and 
a c h a r a c t e r i s t i c  ve loc i ty  of the pulsa t ions .  Consequently neglecting the co r re la t ion  t ime is just if ied.  

In conclusion,  the author thanks R. Z. Sagdeev and V. E. Zakharov for  a d iscuss ion of the r e su l t s .  
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